
Lëtzebuerger Informatiksolympiad 2023
Finals

Task descriptions

Instructions
• The allowed programming language is C/C++.

• All the programs must be console applications. For instructions how to write a console application in the allowed
programming languages, please refer to the remarks on the site www.infosolympiad.lu under the heading The
tasks.

• The input of a program can mean either the direct entry of data from the keyboard (referred to as ”standard input”)
or input via specific function calls described in the task description (”no reading”). Similarly, the output of a program
can mean either printing to the console (referred to as ”standard output”) or output via specific functions described
in the task description (”no writing”).

• The formats of the input and output data shown in the execution examples must be respected. Other formats will
not be accepted.

• For testing, submitting and evaluating a program, the source file with the correct file extension c/cpp must be
uploaded to the automated online judge CMS (Contest Management System), accessible via the homepage www.
infosolympiad.lu or directly via the URL http://158.64.46.20:81. Please use your personal login (username
and password) to access your account on the CMS. The filename of the single source file should be the same than
the task name. Please refer to the CMS for technical details on how to test and submit a program.

• Time limits andmemory constraints are described both in the task statements and the CMS. Please refer to the CMS
for compilation commands.

• You are allowed to ask questions via the CMS, however no hints concerning the use of programming languages, the
implementation of algorithms or the solutions to the tasks will be given. Questions should be about CMS or seek
clarification concerning the task descriptions.

www.infosolympiad.lu
www.infosolympiad.lu
www.infosolympiad.lu
http://158.64.46.20:81


road
LIO 2023: Finals

Author: Jarod Differdange
50/100 points

Road Building
Description
To improve traffic, Luxembourg city decided to make all its roads one‐way only. The city consists of N intersections that
are connected via M roads. Before the change, the city was connected, which means that one was able to travel from
any intersection to any other intersection via the road network. After the change however, this is not necessarily the case
anymore. It is possible that intersections that were connected via bilateral roads before the change are not connected
anymore after restricting the roads to a single direction. As it is very important for the city to stay traversable after the
change, you are tasked with determining if the city is still connected, and to add additional one‐way roads to make it
connected again, if necessary.

Task
Given the city’s plan of M one‐way roads that connect N intersections, find the minimum amount of one‐way roads to
build to make sure that every intersection is reachable from any other intersection.
Note that the city might not need to build any additional roads.

Example

1

2

3 4

5 6

Figure 1: First Example

In example 1, adding a single road is enough to make the city traversable again (e.g. 6 → 1). This example corresponds to
the execution example.

1 2

3

4

Figure 2: Second Example

In example 2, a minimum two roads are needed. (e.g. 3 → 1 and 4 → 2)

Constraints

• 2 ≤ N ≤ 105

• N − 1 ≤ M ≤ 6 · 105

• Before introducing one‐way roads, the city is connected. In other words the city is connected if one can traverse any
road in both directions.



Input and output of program

Input

The first line contains the integersN andM , separated by a space.
The following M lines each contain integers u and v, separated by a space, such that 1 ≤ u, v ≤ N and the pair (u, v)
represents a road from intersection u to intersection v.

Output

A single integer, the minimum amount of roads to build.

Execution example

Input

6 7
1 2
2 3
3 1
3 4
4 5
5 4
5 6

Output

1

Distribution of points

Subtask Points Constraints/Description
1 10 N ≤ 10, M ≤ 100, the answer is in {0, 1, 2}
2 10 N ≤ 2.000, M < 20.000, the answer is only 0 or 1
3 10 M = N − 1
4 20 No additional constraints

Technical constraints

Task name road
Input file standard input
Output file standard input
Time limit 1 second
Memory limit 256 megabytes



task
LIO 2023: Finals

Author: Gilles Englebert
50/100 points

Traffic Control
Description
When large planes take off, they create turbulence behind them, that makes it difficult for smaller planes to take off right
afterwards on the same runway. Thus, there are waiting requirements in place to make sure all planes, no matter their
weight, can take off safely. For instance at Findel Airport, planes are subdivided into three types: light, medium and heavy.
If a medium plane takes off after a heavy plane, it needs to wait for at least 3minutes before taking off. However, a heavy
plane does not need to wait after a light or medium plane has taken off. At busy airports with a multiple runways, where
a queue of planes waits to be assigned runways, it can thus make a big difference in efficiency how planes are allocated to
runways. It is your task to allocate runways in such a way that all the planes take off in the minimum amount of time.

Task
Suppose you are at an airport which has either R = 1 or 2 runways. This airport has T types of planes, numbered from
1 to T . The time a plane of type b needs to wait after a plane of type a has taken off is wab minutes. Currently there are
N planes queued up before the runway(s) of types ti where 1 ≤ i ≤ N . It is your task to assign each plane to one of the
available runways in such a way that the total time taken by all the planes to take off is minimal. It is a requirement that
plane i takes off before plane j if i < j and they take off on the same runway.

Example

First example

Consider Findel airport with R = 1 and three types of planes: light, medium and heavy. We can write the waiting times
in matrix form as:

w =

 0 0 0
3 0 0
3 3 0

 .

As there is only one runway, all planes must use it in the order they are queued up. For instance, if the queue looks like
3, 2, 3, 2, 1 then the total take off time will be 9 minutes, due to the three instances where heavier planes are queued in
front of lighter planes.

Second example

Consider Frankfurt airport with R = 2 and again three types of planes. Due to more complicated interactions between
planes, we can write the waiting times in matrix form as:

w =

 1 0 0
3 1 2
2 3 5

 .

Assume the queue looks like 3, 3, 2, 1, 2. Then the total take off time will be 4minutes obtained by sending the queue to
runways 1, 2, 1, 2, 1 respectively. Note that plane number 4 does not need to wait for plane number 3 to take off, as they
depart from different runways.

Constraints
• R = 1 or 2

• 1 ≤ T ≤ 5

• 1 ≤ N ≤ 1000

• 0 ≤ wab ≤ 10

• 1 ≤ ti ≤ T



Input and output of program

Input data

The first line contains the integers R, T andN , separated by spaces. The next T lines contain T integers each, separated
by spaces. Line i + 1 where (1 ≤ i ≤ T ) contains the integers wij , for 1 ≤ j ≤ T . The next N lines contain one integer
each. Line i+ T + 1 contains the integer ti, where 1 ≤ i ≤ N .

Output data

The output should consist of a single integer, the minimum time it takes for all the planes to take off given the constraints
outlined above in the task description.

Execution examples
The input for the first example is the following:

Input

1 3 5
0 0 0
3 0 0
3 3 0
3
2
3
2
1

Output

9

The input for the second example is the following:

Input

2 3 5
1 0 0
3 1 2
2 3 5
3
3
2
1
2

Output

4

Distribution of points

Subtask Points Constraints/Description
1 10 R = 1
2 5 R = 2, T = 2. The only non‐zero waiting time is w12.
3 25 No additional constraints

Technical constraints

Task name task
Input file standard input
Output file standard input
Time limit 1 second
Memory limit 256 megabytes


